AGRON INFO TECH

Exploring Car Specifications with add_count() Function from dplyr Package

Discover the power of the add_count() function from the dplyr package in R. Explore advanced techniques and practical examples using real-world datasets. Uncover valuable insights, analyze distributions, and make data-driven decisions with ease.

Introduction

In this blog post, we will dive into the powerful add_count() function from the dplyr package in R. This function allows us to easily add a count column to our dataset, providing valuable insights into the distribution and frequency of specific variables. To demonstrate its capabilities, we will be using the “mtcars” dataset, which contains information about various car models.

Loading the Dataset

First, let’s load the “mtcars” dataset using the following code:

data(mtcars)

Understanding the Dataset

Before we start utilizing the add_count() function, let’s gain a basic understanding of the “mtcars” dataset. It consists of 32 observations and 11 variables, including car specifications such as mpg (miles per gallon), cyl (number of cylinders), and hp (horsepower).

Adding a Count Column

To begin, let’s use the add_count() function to add a count column based on the number of cylinders (cyl) in each car model. The code snippet below demonstrates this:

library(dplyr)

mtcars %>%
          add_count(cyl) %>%
          head(n = 10)
#     mpg cyl  disp  hp drat    wt  qsec vs am gear carb  n
# 1  21.0   6 160.0 110 3.90 2.620 16.46  0  1    4    4  7
# 2  21.0   6 160.0 110 3.90 2.875 17.02  0  1    4    4  7
# 3  22.8   4 108.0  93 3.85 2.320 18.61  1  1    4    1 11
# 4  21.4   6 258.0 110 3.08 3.215 19.44  1  0    3    1  7
# 5  18.7   8 360.0 175 3.15 3.440 17.02  0  0    3    2 14
# 6  18.1   6 225.0 105 2.76 3.460 20.22  1  0    3    1  7
# 7  14.3   8 360.0 245 3.21 3.570 15.84  0  0    3    4 14
# 8  24.4   4 146.7  62 3.69 3.190 20.00  1  0    4    2 11
# 9  22.8   4 140.8  95 3.92 3.150 22.90  1  0    4    2 11
# 10 19.2   6 167.6 123 3.92 3.440 18.30  1  0    4    4  7

By executing this code, we create a new column named “count” that represents the frequency of each unique value in the “cyl” variable.

Customizing Column Names

The add_count() function also allows us to customize the name of the count column. For example, we can modify the previous code to use the name “frequency” instead of “count” as follows:

mtcars %>%
          add_count(cyl, name = "frequency") %>%
          head(n = 10)
#     mpg cyl  disp  hp drat    wt  qsec vs am gear carb frequency
# 1  21.0   6 160.0 110 3.90 2.620 16.46  0  1    4    4         7
# 2  21.0   6 160.0 110 3.90 2.875 17.02  0  1    4    4         7
# 3  22.8   4 108.0  93 3.85 2.320 18.61  1  1    4    1        11
# 4  21.4   6 258.0 110 3.08 3.215 19.44  1  0    3    1         7
# 5  18.7   8 360.0 175 3.15 3.440 17.02  0  0    3    2        14
# 6  18.1   6 225.0 105 2.76 3.460 20.22  1  0    3    1         7
# 7  14.3   8 360.0 245 3.21 3.570 15.84  0  0    3    4        14
# 8  24.4   4 146.7  62 3.69 3.190 20.00  1  0    4    2        11
# 9  22.8   4 140.8  95 3.92 3.150 22.90  1  0    4    2        11
# 10 19.2   6 167.6 123 3.92 3.440 18.30  1  0    4    4         7

Filtering Missing Values

In some cases, our dataset may contain missing values. To handle this, we can use the na.rm argument of the add_count() function. Let’s demonstrate how to remove missing values while adding the count column:

mtcars %>%
          add_count(cyl, name = "count", na.rm = TRUE) %>%
          head(n = 10)
#     mpg cyl  disp  hp drat    wt  qsec vs am gear carb na.rm count
# 1  21.0   6 160.0 110 3.90 2.620 16.46  0  1    4    4  TRUE     7
# 2  21.0   6 160.0 110 3.90 2.875 17.02  0  1    4    4  TRUE     7
# 3  22.8   4 108.0  93 3.85 2.320 18.61  1  1    4    1  TRUE    11
# 4  21.4   6 258.0 110 3.08 3.215 19.44  1  0    3    1  TRUE     7
# 5  18.7   8 360.0 175 3.15 3.440 17.02  0  0    3    2  TRUE    14
# 6  18.1   6 225.0 105 2.76 3.460 20.22  1  0    3    1  TRUE     7
# 7  14.3   8 360.0 245 3.21 3.570 15.84  0  0    3    4  TRUE    14
# 8  24.4   4 146.7  62 3.69 3.190 20.00  1  0    4    2  TRUE    11
# 9  22.8   4 140.8  95 3.92 3.150 22.90  1  0    4    2  TRUE    11
# 10 19.2   6 167.6 123 3.92 3.440 18.30  1  0    4    4  TRUE     7

By setting na.rm = TRUE, the add_count() function will omit missing values and provide the count for valid observations only.

Exploring Relationships

The add_count() function can be integrated with other dplyr functions to explore relationships between variables. For instance, we can examine the relationship between the number of cylinders (cyl) and the number of gears (gear) in the “mtcars” dataset. Here’s an example code snippet:

mtcars %>%
          add_count(cyl, gear, name = "count") %>%
          arrange(desc(count)) %>%
          head(n = 10)
#     mpg cyl  disp  hp drat    wt  qsec vs am gear carb count
# 1  18.7   8 360.0 175 3.15 3.440 17.02  0  0    3    2    12
# 2  14.3   8 360.0 245 3.21 3.570 15.84  0  0    3    4    12
# 3  16.4   8 275.8 180 3.07 4.070 17.40  0  0    3    3    12
# 4  17.3   8 275.8 180 3.07 3.730 17.60  0  0    3    3    12
# 5  15.2   8 275.8 180 3.07 3.780 18.00  0  0    3    3    12
# 6  10.4   8 472.0 205 2.93 5.250 17.98  0  0    3    4    12
# 7  10.4   8 460.0 215 3.00 5.424 17.82  0  0    3    4    12
# 8  14.7   8 440.0 230 3.23 5.345 17.42  0  0    3    4    12
# 9  15.5   8 318.0 150 2.76 3.520 16.87  0  0    3    2    12
# 10 15.2   8 304.0 150 3.15 3.435 17.30  0  0    3    2    12

This code will generate a count column based on the combination of cylinders and gears, allowing us to identify the most frequent combinations in the dataset. The arrange() function is then used to sort the data frame in descending order based on the count column.

Conclusion

The add_count() function from the dplyr package provides a straightforward way to add a count column to our dataset, enabling us to analyze the distribution and frequency of variables. In this blog post, we explored its usage with the “mtcars” dataset, covering multiple scenarios such as customizing column names, handling missing values, and integrating it with other dplyr functions. By leveraging add_count(), we can uncover valuable insights and make data-driven decisions in various data analysis projects.

I hope this blog post has been helpful!


Download R program — Click_here

Download R studio — Click_here